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ABSTRACT

A nuclear electric propulsion concept using a thermionic reactor

inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet)

is described and the results of preliminary analyses are presented. 	 In

this system, the MPD thruster operates intermittently at higher voltages

-	 ? and power levels than the thermionic generating unit.	 A typical thrust

pulse from the MPD arc jet in this study is characterized by power levels

of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of — 20%. 	 The

thermionic generating unit operates continuously but with a lower power

- level —0.4 MWe.	 Energ y storage between thrust pulses is provided by

j_ building up a large current-in an inductor using the output of the

thermionic converter array.	 Periodically, the charging current is

interrupted and the energy stored in the magnetic field of the inductor

is utilized for a short duration thrust pulse. 	 The results of the pre-

liminary analysis show that a coupli,^g effectiveness of approximately

85 to 90% is feasible for a nominal 400 KWe system with an inductive

unit suitable for a flight vehicle. 	 Optimized values of the total

specific mass of the system including the thermionic reactor, the in-

ductor, and the MPD thruster are estimated in the range of 23 to 24 kg/KWe.
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1.0 NOMENCLATURE

Roman Letters

Bs . Parameter used in calculating the inductance of a long solenoid

d . Mean diameter of the inductor, cm

F . Parameter used in calculating the inductance of a long solenoid

I . Current, amps or kiloamps (kA)

I . Maximum value of the current in a cycle, amps or kiloamps (kA)
I . Minimum value of the current in a cycle, amps or kiloamps (kA)

I
0 . 

Short circuit current of thermionic converter array, amps

L . Inductance of the solenoid inductor, ph

h . Length of the inductor, cm

ML . Mass of the inductor, kg

N . Number of turns in the inductor

P . Net power supplied to thruster, We

P . Maximum electric power available from the thermionic reactor, KWe
0

R . Resistance of the inductor winding, ohms

R . Total resistance of the current buildup part of the circuit, ohms
p

R . Resistance of the MPD thruster part of the circuit, ohms
s

s	 . Thickness of the inductor winding, cm

T . Time between pulses for current buildup, msec

t* . Duration of the thrust pulse, msec

V 
	 Voltage of the thermionic converter array, volts

VF	Parameter in the approximate thruster V-I curve, 30 volts

V0	Open circuit voltage of the thermionic converter array, volts

VT . Voltage of the MPD thruster, volts

4
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Greek Leters:

am : Specific mass of the MPD th ruster, kg/KWe

a  . Specific mass of the complete system, kg/KWe

a  . Specific mass of the thermionic reactor, kg/KWe

aT . Specific mass of the switching transistors, kg/KWe

aTR : Specific mass of the transistor radiator, I.g/KWe

S . Parameter in the approximate thruster V-I carve, 1.2 x 10-6 (amp)-2

n . Coupling effectiveness, %

T . Time constant for current buildup, msec

p . Temperature dependent resistivity, uSt-cm

9 _ Temperature of the inductor, 0 

3
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2.0 INTRODUCTION

Providing propulsion power for deep space missions is often best accom-

plished with a nuclear electric system. An attractive choice for the power

system is a nuclear reactor which uses thermionic conversion for electrical

generation. The thermionic reactor is a compact, simple system with no moving

parts and a high heat rejection temperature which permits a smaller radia'.or to

be used for dissipating the waste heat. Other advantages for spacecraft power

include reliability (no single point failures), long life, and a low specific

mass (Ref. 1).

The characteristics of the thruster unit must be optimized for each mission.

The thrust variables which must be considered include efficiency of conversion,

specific impulse, power level, and specific mass. The MPD thruster has many

advantages for spacecraft electric propulsion. A princl.pa.: advantage of MPD

devices over ion rockets is the high thrust density available with the arc jet

(typically 1 to 10 N/cm2 ). This high thrust density usually allows a signifi-

cant savings in the mass of the system.

However, efficient operation of the MPD thruster is achieved at power levels

(in the megawatt range) which are higher than optimum for many missions. Further-

more, the output of the thermionic converter array is low voltage DC which re-

quires voltage transformation to match the requirements of the MPD arc jet. The

differences in power levels between the thruster and the thermionic generating

unit combined with the need for power conditioning have led to a system design

in which power is transferred to the thruster by means of inductive energy storage.

The thruster is operated in quasi-steady or pulse mode while the thermionic

generating unit operates continuously. Between pulses, energy is stored in the

magnetic field of a large inductor and dissipated in each short duration thrust

pulse. The operating cycle begins with a relatively long charging period (sev-

eral cosec). During this time the current is built up in the windings of the

inductor. The charging current is interrupted at the end of the charging period.

Next follows the short thrust period (^-1 cosec) where the current decays rapidly

to a lower value. The rapidly changing magnetic flux inthe inductor generates

a hit3h voltage to power the thruster. The only other required power conditioning

element is the switching device(s) to interrupt the charging current.

-3-
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3.0 SYSTEM DESCRIPTION

3.1 Vehicle Configuration

The thermionic reactor design and spacecraft configuration which

form a basis of this work have been developed by previous studies at Jet

Propulsion Laboratory (Refs. 1 & 2). The design chosen for the spacecraft

is an end thrust type of vehicle which is shown in Fig. 1. The thermionic

reactor is located at the :ear of the spacecraft behind the radiation shield.

The inductor must be configured to fit inside the 2? shadow cone of the

radiation shield.

3.2 Thermionic Reactor

Design of the thermionic reactor has been carried out primarily by

personnel at Los Alamos Scientific Laboratory as a subcontract to JPL (Refs.

2 & 3). The reactor system is an out-of-core design which uses high temper-

ature heat pipes to transfer heat from a fast spectr ,nm compact reactor to an

array of thermionic converters. The configuration of the reactor system

(Ref. 2) is shown in Fig. 2. Electrical connections between converters are

made in a direction transverse to the axis of the heat pipes. The output bus

bars are arranged in 6 layers which are accessible for connections at the peri-

phery of the thermionic converter array.

The emitter temperature of the thermionic converters is — 1650 0K and

the collector temperature is , 9000K. Average power density is approximately

6 watts/cm2 . The area of each converter is a 162.6 cm2 . There are 540 con-

verters in the complete power package (Ref. 2).

Various combinations of series-parallel connections for the therm-

ionic converter array can produce output voltages from — 3 volts to _ 54 volts

with correspondingly different currents. The optimum voltage for the inductive

coupled MPD thruster depends upon resistive and switching losses as well as the

1•ariation of thruster lerformance with current. Determination of the optimW.

connection arrangement is not possible because detailed data on the variat:.on

, f thruster efficiency with operating current are not available. Compromise

,alues of the reactor current and voltage were selected for this study which

iroduce currents of ^ 12,000 amps at — 39 volts. The total power at the bus

ars is 474 K11e.

-4-
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Tie current . _ltage characteristic of a typical thermionic device

is shown in Fig. 3a. For purposes of the analysis, a linear approximation

was used for the current-voltage characteristic of the entire thermionic array

as is shown in Fig. 3b. The open circuit roltage, shown on the figure as V0,

is 78 volts and the short circuit current, I0 , is 24,390 amps. The approximate

I-V characteristic is written as

V  = V0(1 - I/I0 ).
	

(1)

The maximum power from the reactor, P o occurs at approximately Vo/2 and I012;

-	 i.e.

I V

P = 04 0	 (2)o 

3.3 Magnetoplasmadynamic Thruster

Research on the quasi-steady MPD thruster is being carried out by

the School of Engineering and Applied Sciences at Princeton University (Ref. 4).

This Princeton program includes experiments to evaluate the thruster character-

istics and demonstrate the use of inductive coupling. In this set of experi-

ments, the power source is simulated by a capacitor bank.

The MPD thruster consists of a two electrode device and a propellant

injection system as shown schematically in Fig. 4. The cylindrical cathode at

the center is surrounded by an annular annod.e. Propellant is injected through

the insulating back plate and accelerated out as a plasma to produce thrust.

Current traveling axially down the cathode produces an azimuthal magnetic field.

When the current then flows through the plasma it produces a J x B acceleration
to move the plasma out the back of the thruster.

High currents are required by the thruster to produce the azimuthal

self magnetic field. Operation of an MPD device at lower currents is possible

but usually requires an externally generated magnetic field. The self field

t:-pe operation is much preferred for better efficiency and lower mass.

-7-
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OUTPUT VOLTAGE

i

(a)

OUTPUT VOLTAGE

F'ig. 3 Output Characteristics of Thermionic Power Sources.
(a) Typical I-V Curve of Cylindrical Thermionic Con-
verter (b) Linear Approximation Representing the
Output of a Thermionic Reactor. I o = 24390 amps.
Vo = 77.8 volts

(b)
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The MFD thruster can use a variety of propellants since any medium

through which an arc can be passed is capable of being accelerated. The pro-

pellant choice depends on the mission. Typical experimental MPD thrusters,

currently being tested, use inert gases as propellants.

The voltage-current characteristic of an experimental MPD thruster

previously tested at Princeton (Ref. 5) is shown in Fig. 5. As shown in the
figure, then^ are two branches to .he V-I characteristic. In the upper branch

(high slope) Lhe voltage is proport wnal to I 3 . In order to model the V-I

ellaracteristic of the thruster for analytical purposes, the following equation

was used.

VT = VF + SI2	(3)

In Eq. (3) the thruster voltage is proportional to the 2nd power

of the current. The form of Eq. (3) was selected even though a cubic approxi-

mation would be better because a cubic V-I characteristic leads to mathematical

complexity in subsequent equations. The analytical approximation with V F = 30

and $ = 1.2 x 10 -6 is compared with an experimental characteristic in Fig. 6.

4.0 INDUCTIVE COUPLING CIRCUITS

4.1 Transformer Type Circuit

To provide maximum flexibility in voltage transformation, it might

be desirable to have an inductive unit with separate primary and secondary

windings, i.e. a transformer. A schematic diagram which shows a transformer

type circuit for coupling a thermionic reactor with a MPD thruster is presented

in Fig. 7. By proper choice of the turns ratio between the primary and secon-

dary, any desired voltage at the output can be obtained. The initial phase of

this study centered around this type circuit.

Analysis shoes that good coupling is possible at a variety of turns

ratios. An important requirem. : for good efficiency is the speed of the con-

trcl	 S1 (see Fig. 7). The control element must be capable of inter-

rupting	 primary current in a time significantly less than 1 msec. If S1

v

-10-
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does not reach a high impedance state ("open circuit") rapidly; large amounts

of power are dissipated in the switch.

4.2 Self Inductor Circuit

One analytical result obtained with the transformer circuit is parti-

cularly interesting. This shows that a turns ratio of 1, i.e. a self inductor,

is compatible with the nominal values stated earlier for the current and voltage

in the thermionic converter array. A self inductor type of current is preferred

because of the additional simplicity and lower mass available with a single

winding. Consequently, greater emphasis has been placed on the self inductor

circuit in the recent phase of this work.

A schematic of the self inductor circuit is shown in Fig. 8. As shown
in the figure, the thruster is connected across the switching unit in this type

of circuit. The switch is closed during the charging cycle and the current

by-passes the thruster to build up a magnetic field in the inductor. During the

thrust part of the cycle, the switch is open and the current is then forced

to flow through the thruster unit. The current decays rapidly during this time

consuming the energy which had been stored in the inductor during the charging

cycle.

The .particular device to be used as the switch in the circuit is not

yet designed. However, an array of transistors or SCR's could be used for this

purpose. For performance calculations it was assumed that a one volt drop

occurs across the switch when it is in the closed position.	 conceptual de-

sign for a switch of this type could consist of 100-200 semiconductors in parallel.

Each semiconductor carries : 100 amps. Previous system analyses for spacecraft

power conditioning have used transistors for inverter switching with similar

operating characteristics (Ref. 6).

5.0 PERFORMANCE OF THE SELF-INDUCTOR CIRCUIT

5.1 Current Buildup

Using the linear approximation for the thermionic generating unit, a

differential equation for the current buildup during the charging cycle can be

written as follows:

-13-
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Ldt+IRp— vo(1-i) = o	 (4)
0

or

V

where

is
i	 L

T = R  
+ V0/Io
	

(6)

So)-ving-Eq. (5), and evaluating the constants using initial condi-

tions yields the following result.

Vo T
I = I exp!- T + R 	 V0/I0 1 - exp^ T)	 ('()

\\	 P

5.2 Current During the Thrust Pulses

The thrust pulse begins when the switch is opened. The switch remains

open during the thrust pulse. The turn-off time of the switch is assumed to

be negligible (<< 1 msec). It may be possible to initiate the arc in the MPD

thruster by the voltage transient as the switch opens. If this proves to be

unfeasible, it is possible to use a small auxiliary pulse to start the are in

the MPD thruster. At the time the switch is opened, the current is at its maxi-

mum value. The decay of the current during the thrust pulse is described by

the fcllowing differential equation.

L dtdI + VF + SI2 - Vo (1 - I ) = o	 (8)
0

-15-
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During the thrust pulse the current falls to its final value I.

Solution of Eq. ( 8) yields a relationship for I as follows.

I	 I(t*) _ (2c )1 ± K exp ( - q t*)	 (9)

where

_ 2cl +b- 3-
K - 2c +b + q	 (10)

q = b2 - 4 ac	 (11)

^e

I"

a = VF V°L 	 (12)

R +R +V JI
b = p	

sL 
° °	 (13)

C = S	 (14)
L

The values of I, I, t* and T as shown in Eqs. (7) and (9) are sub-

ject to optimization. It is desirable to have the current during the charging

cycle remain as close as possible to the maximum power point of the thermionic

converter array (-12000 amps). On the other hand effective use of the inductor

requires that the difference between I and I be as large as possible. It is also

desirable to maintain the current through the thruster as high as possible. Be-

cause of these considerations, it is necessary to evaluate I, I, t* and T as

part of the comple+e optimization.

-16-



6.0 CHARACTERISTICS OF THE INDUCTOR

6.1 Inductor Configuration

A system optimization requires detailed relationships for the variables

which affect the characteristics of the inductor. A toroidal type of inductor

may be preferred because it completely contains the magnetic field. Time-varying

stray magnetic fields may be a source of interference for spacecraft instru-

mentation. However, it is difficult to design a toroidal inductor which will

fit inside the shadow cone as shown in Fig. 1. As a result, a solenoidal inductor

geometry was chosen for this study. A solenoid also has a better ratio of induc-

i;
	 tance to resistance than a toroid of equivalent mass. The size of the inductor

shown in Fig. 1 is approximately to scale for a near optimum solenoidal confi-

guration.

6.2 Inductance

The dimensions of the solenoidal inductor are shown in Fig. 9. All

dimensions are in centimeters.

s

d

h

1	
Fig. 9 Dimensions of Solenoid Inductor
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The inductance of a solenoid of this type is given by Eq. (15)

below:

2

L(1lh) = 2
N	

F 
	 . 015h6 ds ( . 69 3 + BB )	 (15)5T 

I

^o

The functions F and Bs are tabulated in Ref. 7. However, the following analy-

tical expressions have been obtained for these functions by curve fitting to

the tabulated data.

)

	

F = .02378 (d/h) - .00652 (d/h) 2 	(16)

a.

'	 Bs = .28 - .44 exp	 .45086 ( h/s)^	 (17)

3
i

6.3 Mass of the Inductor

The mass of the inductor varies inversely w'.th t?Ze resistance of
t

the winding. It's desirable to have the lowest possible re's,LAance so it is

necessary to compromise between the mass and the ohmic loss. The material
i

which has the lc.:est ratio of mass density to electrical conluctivity is

aluminum (soOlum has a lower value but it is not a practical -nolce). Con-

sequently, the inductor windings are made of aluminum which is lwiinated to

cut down eddy current losses. The laminations are assumed t .o take up 10% of

the volume.

6.4 Resistance

The resistivity of aluminum is temperature dependent. Since signi-

ficant ohmic losses will cause a temperature rise in the inductor it is neces-

sary to use temperature dependent resistivity. An equation was fit to published

iata for the resistivity of aluminum (Ref. 8) as shown below.

	

P(A - cm) = 5.915 + .0232 8 —1.75 x 10-5 82	 (18)
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The value of the resistivity given by Eq. (18) is increased by 10% to account

for the volume lost by lamination. This is then used to calculate the resis-

tance of the helical inductance winding in the following equation

R = PA (7rd) 2 (N,+ 1) 2 + 1 	 (19)s	 h2

6.5 Heat Balance

The thermal power generated by ohmic losses in the inductor is radiated

from its outer surface. No additional radiator is necessary. The temperature
^g of the inductor rises to approximately 600 0K at thermal equilibrium by radia-

tion. The above relationships for the characteristics of the inductor combined

with previously derived equations for the performance of the thruster and the

thermionic generating unit contain the necessary elements to perform a system

A	 optimization.

7.0 OPTIMIZATION

7.1 Coupling Effectiveness

Two criteria were used for optimization of the system. One is to

maximize the coupling effectiveness, the other is to minimize the total spe-

cific mass of the power generating system and thrust unit.

The notion of coupling effectiveness requires some definition and

discussion. The coupling effectiveness is defined as the average net power

reaching the thruster divided by the maximum power available from the thermionic

generating unit. This can be written as:

P	 I	 Energy Per Thrust Pulse 	 (20)n = P - ',^ Io Vo	 T + t*

This is not precisely the same as an efficiency. A major reason

why n is not unity is that the current varies during a cycle and does not always



stay at the maximum power value, I
0
/2. Only a portion of the power which is

not coupled into the thruster is dissipated in ohmic and switching losses.

For example, near the optimum approximately 14% of the maximum available power

is not transferred to the thruster (n opt = 85%); lut only approximately 6%
is consumed by ohmic losses.

Thus, the value of n is a correct measure of the generating capacity

required by the system, but it does not correctly determine reactor thermal

power because the thermal input to the thermionie converters varies with current.

The specific mass of the reactor is inversely proportional to the coupling ffec-

tiveness, but the specific mass of the radiator does not vary in the same way

and neither does the fuel burn-up. Because of these facts, the estimates of

specific mass for the entire system produced in this study are Qomewhat con-

servative.

7.2 Specific Mass

A previous study (Ref. 4) estimated the specific mass for the therm-
ionic heat pipe reactor as a = 19.7 kg/KWe. This value was based on a system
where the reactor gross power is 474 KWe and the net power is 400 KWe. It's
convenient to redefine the specific mass value in terms of the gross power,

thus

R = 19.7(474) = 16.6 kg/KWe	 (21)

This specific mass of the switching device is difficult to estimate

since the switch is not defined. However for calculation purposes, the mass

of transistors previously used for spacecraft power conditioning (Ref. 6) will

be used. Each transistor caries 75 amperes; hence the number of transistors
required is

2P
Number of Transistors = 75	 75 V 75 V n	 (22)

0	 0
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The mass associaind with the transistors and the appropriate connections is

35 kg per trans :;tor (Ref. 6). Multiplying by the number of transistors given

by Eq. (22) gives the specific mass of the switching device, aT = .12 kg/KWe.

A small a=iliary radiator is required to dissipate the heat generated

in the switching transistors. Specific mass of this radiator, a TR , is estimated

to be about 1 kg/KWe (Ref. 6).

The specific mass of a quasi-steady MPD thruster has been estimated

as aM =.6 xg/KWe in the power range of a few megawatts (Ref. 9). The total

mass of the system can be written in terms of the net power and the coupling

effectiveness as follows

a P a P a P
R 

t n 
+ Tn	 + ML 	+ a.M 	 P --Mass of System	 (23)

Dividing through by the net power, P, yields the specific mass of the entire

system

G . _ 
'tR	

T	 R + aM + M 	 (24)
n

or

aS = 17.7 + . 6 + 40
	 (25)

Inspection of Eq. (25) shows that a  varies inversely with the

coupling effectiveness n and directly with the mass of the inductor M L . The

variation of the thruster efficiency is not directly included in the optimizat-lon.

Hence, an arbitra.-y decision we.s made to keep the thruster current above 9,000

amperes for efficient operation. A nominal 1 cosec duration was chosen for the

thrust pulse which is near the optimum. Other variables were then optimized

to yield a minimum in the system specific mass by an iterative calculation using
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r

Fit
a HP 9820A programmable calculator. This calculator program and sample output

are included as Appendices A and B respectively.

8.0 OPTIMIZATION RESULTS

The oltimum value for the parameters of the inductive coupled system are

as follows:

• Duration of the thrust pulse, t* = 1.0 msec

• Time between pulses, T = 4.5 msec

• Maximum current I = 14.7 kA

• Minim,m current I = 9.1 kA

• Inductance, L = 29 ph (9 turns)

• Mass of the inductor ML = 950 kg

• Coupling effectiveness T1 = 86p

• System specific mass as = 23.5 kg/KVe

Variations of the parameters in the vicinity of the optimum are shown in

Fig. 10, 11, l21 and 13. The design point for the inductor mass (950 kg) is

slightly higher than the value which yields a minimum in the specific mass.

This value was selected to yield a higher coupling effectiveness and also to

provide some safety factor in the design. The performance has a broad optimum

with inductance in the range of 15-60 Ph (7 to 13 turns) as shown in Fig. 11.

The optimum value of the pulse duration is slightly above 1 msec as shown in

Fig. 12. However, the 1 msec value was chosen as a design point to maintain

a higher value of I (refer to Eq. (9)). Similarly the optimum value of the

time between pulses, T, is slightly less than 4.5 msec; however, the 4.5 msec

value was retained as a design point to give the value cf I (refer to Eq. (7)).

The waveforms of the current through the inductor and the power produced

by the thruster are shown in Figs. 14(a) and W. The duty cycle of the thruster

is 22% at the design point.
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9.0 SUMMARY AND CONCLUSIONS

The results of the preliminary analysis have shown that an inductively

coupled thermionic reactor and an MPD thruster is a potentially attractive

system for spacecraft electric propulsion. Good coupling efficiency has been

shown to be possible. Specific mass of a nuclear electric propulsion system

using ion rockets is calculated to be — 28 kg/KWe (Ref. 3). Thus the specific

mass estimate of 23.5 kg/KWe for the TI-MPD system obtained in this work appears

to be competitive.

Additional experimental and analytical work must be accomplished before

the system is proven flight ready. Experimental data are needed to assess the

performance of an MPD thruster when driven by an inductive source. An important

remaining design uncertainty is the current interrupting switch (solid sate or

other). Design of a switching circuit to interrupt - large currents in an in-

ductive circuit is somewhat difficult.

If the remaining considerations can be satisfactorily treated by continued

development, the thermionic - MPD system will be an important option for future

space missions.
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APPENDIX A

A COMPUTER PROGRAM FOR CALCULATING

THE PERFORMANCE OF THE TI-MPD SYSTEM
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